
Defect

Detect

Rust
Memory Thinking

Version 2

Dmitry Vostokov
Software Diagnostics Services

Memory Thinking for Rust

Slides with Descriptions and Source Code Illustrations

Second Editon

Dmitry Vostokov
Software Diagnostics Services

OpenTask

2

Memory Thinking for Rust: Slides with Descriptions and Source Code Illustrations, Second Editon

Published by OpenTask, Republic of Ireland

Copyright © 2025 by OpenTask

Copyright © 2025 by Dmitry Vostokov

Copyright © 2025 by Software Diagnostics Services

Copyright © 2025 by Dublin School of Security

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, transmitted in any form or

by any means, or used for training artificial intelligence systems without the prior written permission of the pub-

lisher.

OpenTask books are available through booksellers and distributors worldwide. For further information or comments,

send requests to press@opentask.com.

Product and company names mentioned in this book may be trademarks of their owners.

A CIP catalog record for this book is available from the British Library.

ISBN-13: 978-1912636488 (Paperback)

Revision 2.00 (April 2025)

mailto:press@opentask.com

Table of Contents

Table of Contents 3

Preface 9

About the Author 10

Introduction 11

Prerequisites 11

Training Goals 12

Warning 12

Training Principles 13

Schedule 13

Training Idea 14

General Rust Aspects 14

What We Do Not Cover 15

Linux Rust Aspects 16

Windows Rust Aspects 16

Why Rust? 17

My Genealogy of Rust 18

Rust Mastery Process 19

Thought Process 19

Philosophy of Unsafe Pointers 20

A General Pointer Concept 20

Pointer 21

Pointer Dereference 21

One to Many 22

Many to One 22

Many to One Dereference 23

Invalid Pointer 23

Invalid Pointer Dereference 24

Wild (Dangling) Pointer 24

Pointer to Pointer 25

Pointer to Pointer Dereference 25

Naming Pointers and Entities 26

Names as Pointer Content 26

Pointers as Entities 27

Unsafe Rust Code Examples 28

Pointer 29

Unsafe Pointer Dereference 30

One to Many 32

Memory Leak 34

Many to One 35

Unsafe Many to One Dereference 37

Invalid Pointer 38

Unsafe Invalid Pointer Dereference (Alignment)

 39

4

Unsafe Invalid Pointer Dereference (Access

Violation) 40

Unsafe Wild (Dangling) Pointer 41

Pointer to Pointer 42

Unsafe Pointer to Pointer Dereference 43

Philosophy of Values 45

Values and Owners 46

Moving Values 47

Copying Values 49

Dropping Values 50

Ownership Tree 52

Ownership Tree and Drops 53

Partial Drops 54

Ownership Tree and Moves 56

Multiple Owners (not in Rust) 57

Multiple Owners and Drops 58

Owners vs. Pointers 58

Rust: A Copernican Revolution 59

Values Revolve Around Pointers 59

Owners Revolve Around Values 60

Rust Philosophy of Values 61

Restricted Ownership 62

Value Lifetime 63

Owner Lifetime 65

Rust Philosophy of Pointers 68

Types of Pointers 69

Mut Pointers vs. Pointers to Mut 69

References as Pointer Types 70

Mut Refs vs. Refs to Mut 72

References as Addresses 73

Borrowing References 75

Reference Lifetime 77

x64 Disassembly Review (WinDbg) 79

x64 CPU Registers 79

Instructions and Registers 80

Memory and Stack Addressing 80

Memory Cell Sizes 81

Memory Load Instructions 81

Memory Store Instructions 82

Flow Instructions 82

Function Parameters 83

Struct Function Parameters 83

x64 Disassembly Review (GDB AT&T Flavor) 84

x64 CPU Registers 84

5

x64 Instructions and Registers 85

Memory and Stack Addressing 85

x64 Memory Load Instructions 86

x64 Memory Store Instructions 86

x64 Flow Instructions 87

x64 Function Parameters 87

x64 Struct Function Parameters 88

ARM64 Disassembly Review 89

A64 CPU Registers 89

A64 Instructions and Registers 90

Memory and Stack Addressing 90

A64 Memory Load Instructions 91

A64 Memory Store Instructions 91

A64 Flow Instructions 92

A64 Function Parameters 92

A64 Struct Function Parameters 93

Memory Storage 94

Memory Regions 95

Dynamic Virtual Memory 95

Static Memory 96

Rust Static Memory Values 96

Global vs. Local Static 97

Rust Static Memory References 97

Stack Memory 102

Thread Stack Frames 102

Local Value Lifecycle 103

Scope 103

Rust Stack Memory Values 104

Rust Stack Memory References 104

Heap Memory 107

Rust Heap Memory Values 108

Rust Const Values 110

Useful WinDbg Commands 112

Useful GDB Commands 112

Memory and Pointers 113

Mental Exercise 114

Debugger Memory Layout 114

Memory Dereference Layout 115

Names as Addresses 115

Addresses and Entities 116

Addresses and Structures 116

Pointers to Structures 117

Arrays 117

Arrays and Pointers to Arrays 118

6

Fat Pointers 118

Array Slices 119

String Literals (UTF-8) 122

Byte Strings 124

Vectors 125

Vector Slices 126

Strings 129

String Slices 130

C-Strings 132

C-String Slices 133

Basic Types 135

Bytes, Pointers, and References 136

u32, Pointers, and References 138

Little-Endian System 140

u64 and Pointers 141

Size 143

Alignment 147

Entity Conversion 149

Conversion through Pointers 150

Safe Conversion (Explicit Cast) 151

Safe Conversion (Coercion) 153

Forcing 155

Tuples 157

Structs 159

Tuple-like Structs 160

Newtypes 163

Newtypes (Binary Compatible) 165

Named-field Structs 166

Reference/Pointer to Struct 169

Ref/Ptr to Struct Dereference 170

Dereference with Replacement 171

One Ref/Ptr to Many Structs 173

Memory Leak 173

Many Ref/Ptr to One Struct 174

Many to One Dereference 174

Ref/Ptr to Ref/Ptr to Struct 175

Ref/Ptr to Ref/Ptr Dereference 175

Memory and Structs 179

Addresses and Structs 180

Struct Field Addresses 180

Ref/Ptr to Structs 183

Ref/Ptr to Struct and Fields 184

External Struct Alignment 187

Internal Struct Alignment (WinDbg) 187

7

Internal Struct Alignment (GDB) 188

Enums 191

Simple Enums 192

Enums with Structs 195

Enum Null Pointer Optimization 199

Source Code and Symbols 201

Conceptual Layer (Modules) 202

Logical Layer (Crates) 202

Physical Layer (Source Files) 203

Name Isolation 203

Functions 206

Pointers to Functions 207

References to Functions 209

Function Pointer Types 211

Struct Function Fields 212

Associated Functions 213

Pointers to Associated Functions 215

Type-associated Functions 217

Trait Functions 219

Trait Objects 219

vtable Memory Layout 221

Trait Object Memory Layout 221

Boxed Trait Object Layout 225

Struct Constructors 228

Struct Destructor 230

Struct Clone 234

Struct Copy 235

Parameters by Value 237

Parameters by Ref/Ptr 240

self 242

Trait Objects as Parameters 243

Struct as Return Value 244

Closures and Captures 246

Closure Struct 247

A64 Closure Struct Example 248

Captures (Borrowing) 248

Captures (Borrowing) x64 Linux 249

Captures (Move) 250

Captures (Move) x64 Linux 251

Smart Pointers 253

Why Smart Pointers? 254

Types of Smart Pointers 254

Interior Immutable Single Owner 255

Interior Mutable Single Ownership 257

8

Shared Ownership 261

Pinning 266

Use Cases 267

Rust Books 272

